试题
题目:
连接菱形各边中点的四边形是
矩形
矩形
.
答案
矩形
解:由中位线定理可得,所得四边形的对边平行且相等,则此四边形为平行四边形;又因为菱形的对角线互相垂直平分,可求得四边形的一角为90°,所以连接菱形各边中点的四边形是矩形.
故答案为:矩形.
考点梳理
考点
分析
点评
专题
矩形的判定;三角形中位线定理;菱形的性质.
根据矩形的判定:有一角为90°的平行四边形是矩形.
此题主要考查矩形的判定定理:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
证明题.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )