试题
题目:
(2002·常州)四边形的对角线互相垂直,顺次连接它的各边中点所得的四边形是
矩形
矩形
.
答案
矩形
解:顺次连接四边的各边中点所得的四边形是平行四边形,当四边形的对角线互相垂直时,平行四边形的邻边也互相垂直,所以是矩形.
故答案为:矩形.
考点梳理
考点
分析
点评
专题
矩形的判定;三角形中位线定理.
根据对角线互相平分且相等的四边形是矩形.
主要考查了三角形中位线定理中的数量关系:中位线等于所对应的边长的一半.解题的关键是根据中位线定理得出所求的四边形边的数量关系和位置关系,再根据对角线的数量关系和位置关系进行判断.
证明题.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )