试题
题目:
(2010·庆阳)如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四种说法:
①四边形AEDF是平行四边形;
②如果∠BAC=90°,那么四边形AEDF是矩形;
③如果AD平分∠BAC,那么四边形AEDF是菱形;
④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.
其中,正确的有
①②③④
①②③④
(只填写序号).
答案
①②③④
解:①∵DE∥CA,DF∥BA,
∴四边形AEDF是平行四边形;故①正确;
②若∠BAC=90°,则平行四边形AEDF是矩形;故②正确;
③若AD平分∠BAC,则DE=DF;
所以平行四边形是菱形;故③正确;
④若AD⊥BC,AB=AC;
根据等腰三角形三线合一的性质知:DA平分∠BAC;
由③知:此时平行四边形AEDF是菱形;故④正确;
所以正确的结论是①②③④.
考点梳理
考点
分析
点评
专题
菱形的判定;平行四边形的判定;矩形的判定.
根据平行四边形、矩形、菱形的判定方法进行解答.
此题主要考查了平行四边形、菱形、矩形的判定方法:
两组对边分别平行的四边形是平行四边形;
有一个角是直角的平行四边形是矩形;
一组邻边相等的平行四边形是菱形.
压轴题.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )