试题
题目:
如图,下列条件不能判定四边形ABCD是矩形的是( )
A.∠DAB=∠ABC=∠BCD=90°
B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DO
D.AO=BO=CO=DO
答案
C
解;A、∠DAB=∠ABC=∠BCD=90°根据有三个角是直角的四边形是矩形可判定为矩形,故此选项错误;
BAB∥CD,AB=CD,可以判定为平行四边形,又有AB⊥AD,可判定为矩形,故此选项错误;
C、AO=BO,CO=DO,不可以判定为平行四边形,所以不可判定为矩形,故此选项正确;
D、AO=BO=CO=DO,可以得到对角线互相平分且相等,据此可以判定矩形,故此选项错误.
故选:C.
考点梳理
考点
分析
点评
矩形的判定.
矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.据此判断.
本题考查的是矩形的判定以及矩形的定理,难度简单.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )