试题
题目:
在四边形ABCD中,对角线AC,BD互相平分,要使四边形ABCD为矩形,需添加的条件是( )
A.∠B=90°
B.∠A=∠C
C.AB=BC
D.AC⊥BD
答案
A
解:∵对角线AC与BD互相平分,
∴四边形ABCD是平行四边形,
要使四边形ABCD成为矩形,
需添加一个条件是:对角线相等(AC=BD)或有一个内角等于90°.
故选A.
考点梳理
考点
分析
点评
矩形的判定.
四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等或有一内角为直角.
本题考查了矩形的判定.矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.
找相似题
(2012·黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )
(2011·佛山)依次连接菱形的各边中点,得到的四边形是( )
(2011·德阳)顺次连接菱形各边中点得到的四边形一定是( )
(2009·漳州)如图,要使平行四边形ABCD成为矩形,需添加的条件是( )
(2009·滨州)顺次连接对角线互相垂直的四边形的各边中点,所得图形一定是( )