试题

题目:
在矩形ABCD中,若对角线AC、BD交于点O,且∠AOB=40°,则∠OBC=
20°
20°

答案
20°

解:青果学院
∵四边形ABCD是矩形,
∴AO=OC=
1
2
AC,OB=OD=
1
2
BD,AC=DB,
∴OB=OC,
∴∠OBC=∠OCB,
∵∠AOB=∠OBC+∠OCB=40°,
∴∠OBC=
1
2
×40°=20°,
故答案为:20°.
考点梳理
矩形的性质.
根据矩形性质得出AO=OC=
1
2
AC,OB=OD=
1
2
BD,AC=DB,推出OB=OC,根据等腰三角形性质求出∠OBC=∠OCB,根据三角形的外角性质得出∠AOB=∠OBC+∠OCB,即可求出答案.
本题考查了矩形性质,等腰三角形的性质和判定,三角形的外角性质等知识点,关键是求出∠OBC=∠OCB,题目比较典型,是一道比较好的题目.
找相似题