试题
题目:
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
A.12
B.24
C.12
3
D.16
3
答案
D
解:如图,连接BE,
在矩形ABCD中,AD∥BC,
∴∠AEF=180°-∠EFB=180°-60°=120°,
∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°,
∴∠AEB=∠AEF-∠BEF=120°-60°=60°,
在Rt△ABE中,AB=AE·tan∠AEB=2tan60°=2
3
,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面积=AB·AD=2
3
×8=16
3
.
故选D.
考点梳理
考点
分析
点评
专题
矩形的性质;翻折变换(折叠问题).
连接BE,根据矩形的对边平行可得AD∥BC,根据两直线平行,同旁内角互补可得∠AEF=120°,两直线平行,内错角相等可得∠DEF=60°,再根据翻折变换的性质求出∠BEF=∠DEF,然后求出∠AEB=60°,再解直角三角形求出AB,然后根据矩形的面积公式列式计算即可得解.
本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.
压轴题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
(2012·济南)如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为( )