试题
题目:
已知如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(20,0),C(0,8),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为10的等腰三角形时,点P的坐标为
(6,8)或(4,8)
(6,8)或(4,8)
.
答案
(6,8)或(4,8)
解:∵A(20,0),C(0,8),四边形OABC是矩形,D是OA的中点,
∴OC=8,OD=10,∠OCB=∠COD=90°,
①OP=OD=10,
由勾股定理得:CP=
1
0
2
-
8
2
=6,
即P的坐标是(6,8);
②DP=OD=10,
过P作PM⊥OA于M,
则PM=OC=8,由勾股定理得:DM=
1
0
2
-
8
2
=6,
OM=10-6=4,
即P的坐标是(4,8);
③OP=DP=10,此时DM=OD=6,即OD≠10,即此时不存在;
故答案为:(6,8)或(4,8).
考点梳理
考点
分析
点评
矩形的性质;坐标与图形性质;等腰三角形的判定.
分为三种情况①OP=OD=10,②DP=OD=10,③OP=DP=10,根据勾股定理求出CP,OM即可.
本题考查了矩形性质,等腰三角形的判定,坐标与图形性质,勾股定理的应用,关键是求出符合条件的所有情况.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )