试题

题目:
青果学院(2012·茂名)如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:
(1)△ABF≌△DEA;
(2)DF是∠EDC的平分线.
答案
证明:(1)∵四边形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠DEA=∠B=90°,
∵AF=BC,
∴AF=AD,
在△ABF和△DEA中
∠DAE=∠AFB
∠AED=∠B
AD=AF

∴△ABF≌△DEA(AAS);

(2)证明:∵由(1)知△ABF≌△DEA,
∴DE=AB,
∵四边形ABCD是矩形,
∴∠C=90°,DC=AB,
∴DC=DE.
∵∠C=∠DEF=90°
∴在Rt△DEF和Rt△DCF中
DF=DF
DE=DC

∴Rt△DEF≌Rt△DCF(HL)
∴∠EDF=∠CDF,
∴DF是∠EDC的平分线.
证明:(1)∵四边形ABCD是矩形,
∴∠B=90°,AD=BC,AD∥BC,
∴∠DAE=∠AFB,
∵DE⊥AF,
∴∠DEA=∠B=90°,
∵AF=BC,
∴AF=AD,
在△ABF和△DEA中
∠DAE=∠AFB
∠AED=∠B
AD=AF

∴△ABF≌△DEA(AAS);

(2)证明:∵由(1)知△ABF≌△DEA,
∴DE=AB,
∵四边形ABCD是矩形,
∴∠C=90°,DC=AB,
∴DC=DE.
∵∠C=∠DEF=90°
∴在Rt△DEF和Rt△DCF中
DF=DF
DE=DC

∴Rt△DEF≌Rt△DCF(HL)
∴∠EDF=∠CDF,
∴DF是∠EDC的平分线.
考点梳理
矩形的性质;全等三角形的判定与性质;角平分线的性质.
(1)根据矩形性质得出∠B=90°,AD=BC,AD∥BC,推出∠DAE=∠AFB,求出AF=AD,根据AAS证出即可;
(2)有全等推出DE=AB=DC,根据HL证△DEF≌△DCF,根据全等三角形的性质推出即可.
本题考查了矩形性质,全等三角形的性质和判定,平行线性质等知识点,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,
证明题.
找相似题