答案
解:(1)设EF=x依题意知:△CDE≌△CFE,
∴DE=EF=x,CF=CD=6.
∵在Rt△ACD中,AC=
=10,
∴AF=AC-CF=4,AE=AD-DE=8-x.
在Rt△AEF中,有AE
2=AF
2+EF
2即(8-x)
2=4
2+x
2解得x=3,即:EF=3.
(2)由(1)知:AE=8-3=5,
∴S
梯形ABCE=
=(5+8)×6÷2=39.
解:(1)设EF=x依题意知:△CDE≌△CFE,
∴DE=EF=x,CF=CD=6.
∵在Rt△ACD中,AC=
=10,
∴AF=AC-CF=4,AE=AD-DE=8-x.
在Rt△AEF中,有AE
2=AF
2+EF
2即(8-x)
2=4
2+x
2解得x=3,即:EF=3.
(2)由(1)知:AE=8-3=5,
∴S
梯形ABCE=
=(5+8)×6÷2=39.