试题
题目:
(2012·德庆县一模)如图,已知在矩形ABCD中,E是AD上的一点,连接EC,BC=CE,BF⊥EC于点F.
求证:△ABE≌△FBE.
答案
证明:在矩形ABCD中,AD∥BC,∠A=90°,
∵AD∥BC,
∴∠AEB=∠EBC,
∵BC=CE,
∴∠EBC=∠BEC,
∴∠AEB=∠BEC,
∵BF⊥CE,
∴∠A=∠BFE=90°,
在△ABE和△FBE中
∵
∠A=∠BFE
∠AEB=∠FEB
BE=BE
,
∴△ABE≌△FBE(AAS).
证明:在矩形ABCD中,AD∥BC,∠A=90°,
∵AD∥BC,
∴∠AEB=∠EBC,
∵BC=CE,
∴∠EBC=∠BEC,
∴∠AEB=∠BEC,
∵BF⊥CE,
∴∠A=∠BFE=90°,
在△ABE和△FBE中
∵
∠A=∠BFE
∠AEB=∠FEB
BE=BE
,
∴△ABE≌△FBE(AAS).
考点梳理
考点
分析
点评
专题
矩形的性质;全等三角形的判定与性质.
根据矩形性质得出AD∥BC,∠A=90°,根据平行线性质和等腰三角形性质得出∠AEB=∠EBC=∠CEB,根据AAS证明两三角形全等即可.
本题考查了矩形性质、等腰三角形性质、平行线的性质、全等三角形的判定等知识点,主要考查学生的推理能力,题目比较典型,难度适中.
证明题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )