题目:

(2002·无锡)已知:如图,矩形ABCD中,AB=2,AD=3,E、F分别是AB、CD的中点.
(1)在边AD上取一点M,使点A关于BM的对称点C恰好落在EF上.设BM与EF相交于点N,求证:四边形ANGM是菱形;
(2)设P是AD上一点,∠PFB=3∠FBC,求线段AP的长.
答案

(1)证明:设AG交MN于O,则
∵A、G关于BM对称,
∴AO=GO,AG⊥MN.
∵E、F分别是矩形ABCD中AB、CD的中点,
∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG与MN互相平分且互相垂直.
∴四边形ANGM是菱形.
(2)解:连接AF,
∵AD∥EF∥BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又∵EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴在Rt△PFD中,根据勾股定理得:PA=PF=
=,
解得:PA=
.

(1)证明:设AG交MN于O,则
∵A、G关于BM对称,
∴AO=GO,AG⊥MN.
∵E、F分别是矩形ABCD中AB、CD的中点,
∴AE=BE,AE∥DF且AE=DF,AD∥EF∥BC.
∴MO:ON=AO:OG=1:1.
∴MO=NO.
∴AG与MN互相平分且互相垂直.
∴四边形ANGM是菱形.
(2)解:连接AF,
∵AD∥EF∥BC,
∴∠PAF=∠AFE,∠EFB=∠FBC.
又∵EF⊥AB,AE=BE,
∴AF=BF,
∴∠AFE=∠EFB.
∴∠PAF=∠AFE=∠EFB=∠FBC.
∴∠PFB=∠PFA+∠AFE+∠EFB=∠PFA+2∠FBC=3∠FBC.
∴∠PFA=∠FBC=∠PAF.
∴PA=PF.
∴在Rt△PFD中,根据勾股定理得:PA=PF=
=,
解得:PA=
.