试题
题目:
(2008·海淀区二模)已知:如图,M是矩形ABCD外一点,连接MB、MC、MA、MD,且MA=MD.
求证:MB=MC.
答案
证明:因为在矩形ABCD中,
所以AB=CD,∠BAD=∠CDA=90°.
因为△AMD中,AM=DM,
所以∠MAD=∠MDA,
所以∠MAB=∠MDC.在△ABM和△DCM中
AB=DC
∠MAB=∠MDC
MA=MD
,
所以△ABM≌△DCM.
所以MB=MC.
证明:因为在矩形ABCD中,
所以AB=CD,∠BAD=∠CDA=90°.
因为△AMD中,AM=DM,
所以∠MAD=∠MDA,
所以∠MAB=∠MDC.在△ABM和△DCM中
AB=DC
∠MAB=∠MDC
MA=MD
,
所以△ABM≌△DCM.
所以MB=MC.
考点梳理
考点
分析
点评
专题
矩形的性质;全等三角形的判定与性质.
因为在矩形ABCD中,得到AB=CD,∠BAD=∠CDA=90°.从而得到∠MAD=∠MDA,所以△ABM≌△DCM.而解得.
本题考查了矩形的性质,考查一是矩形对角线的交点恰好就是等腰三角形底边的中点,二是等腰三角形底边上的中线恰好就是顶角的平分线,正是这两个“巧妙”,为我们作角的平分线提供了一种新方法.
证明题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )