试题
题目:
Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为
6
5
6
5
.
答案
6
5
解:由题意知,四边形AFPE是矩形,
∵点M是矩形对角线EF的中点,则延长AM应过点P,
∴当AP为直角三角形ABC的斜边上的高时,即AP⊥BC时,AM有最小值,
此时AM=
1
2
AP,由勾股定理知BC=
AB
2
+
AC
2
=5,
∵S
△ABC
=
1
2
AB·AC=
1
2
BC·AP,
∴AP=
3×4
5
=
12
5
,
∴AM=
1
2
AP=
6
5
.
考点梳理
考点
分析
点评
专题
矩形的性质;三角形的面积;勾股定理.
AM=
1
2
EF=
1
2
AP,所以当AP最小时,AM最小,根据垂线段最短解答.
本题利用了矩形的性质、勾股定理、垂线段最短求解.
压轴题;动点型.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )