试题
题目:
如图,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2,∠BOC=120°,AB=4,则四边形ABCD的面积=
16
3
16
3
.
答案
16
3
解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵OB=OC,
∴OA=OC=OB=OD,
即AC=BD,
∴平行四边形ABCD是矩形,
∴∠ABC=90°,
∵∠BOC=120°,
∴∠1=∠2=30°,
∵AB=4,
∴AC=2AB=8,
由勾股定理得:BC=
8
2
-
4
2
=4
3
,
∴四边形ABCD的面积是AB×BC=4×4
3
=16
3
,
故答案为:16
3
.
考点梳理
考点
分析
点评
矩形的性质.
求出四边形ABCD是矩形,求出∠2,根据AB求出AC,根据勾股定理求出BC,代入AB×BC求出即可.
本题考查了含30度角的直角三角形性质,勾股定理,矩形的判定,平行四边形性质的应用,关键是求出∠ABC=90°和求出BC的长.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )