翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;矩形的性质.
(1)由折叠的性质可得:△MBN≌△MPN,即可得MB=MP,又由四边形ABCD是矩形,可得AB=CD,∠A=∠D=90°,然后分别在Rt△ABM与Rt△DMP中,利用勾股定理,可得MB2=AM2+AB2=y2+4,MP2=MD2+PD2=(3-y)2+(2-x)2,继而求得y与x的函数关系式;
(2)若∠BMP=90°,可证得△ABM≌△DMP,即可得AM=DP,AB=DM,则可求得CP的长.
此题考查了折叠的性质、矩形的性质、全等三角形的判定与性质以及勾股定理.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想与方程思想的应用.