矩形的性质;全等三角形的判定与性质;菱形的判定与性质.
(1)根据中点定义可得AC=2AO,然后求出AO=AB,AC=AG,再利用“边角边”证明△AOG和△ABC全等,根据全等三角形对应角相等可得∠ABC=∠AOG=90°,再利用“角边角”证明△AOF和△COE全等,根据全等三角形对应边相等可得AF=CE,然后求出四边形AECF为平行四边形,最后根据对角线互相垂直的平行四边形是菱形证明;
(2)先求出∠ACB=30°,再根据菱形的性质EA=EC,然后根据等边对等角求出∠EAO=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出OE,再利用勾股定理列式计算求出AO,从而得到AC的长度,然后求出∠CAE=∠GAE=30°,根据等腰三角形三线合一的性质以及直角三角形30°角所对的直角边等于斜边的一半求出CM,再利用勾股定理列式计算即可求出AM.
本题考查了矩形的性质,全等三角形的判定与性质,菱形的判定与性质,熟记各图形的性质与判定方法找出三角形全等的条件是解题的关键.