试题
题目:
如图,O是矩形ABCD的对角线AC的中点,EF经过O点且垂直于AC.求证:四边形AFCE是菱形.
答案
证明:∵四边形ABCD是矩形
∴AD∥BC
∴∠1=∠2
∵EF垂直平分AC
∴AO=CO,∠AOE=∠COF=90°
∴△AOE≌△COF
∴OE=OF
∴四边形AFEC是平行四边形
又∵EF⊥AC
∴四边形AFEC是菱形.
证明:∵四边形ABCD是矩形
∴AD∥BC
∴∠1=∠2
∵EF垂直平分AC
∴AO=CO,∠AOE=∠COF=90°
∴△AOE≌△COF
∴OE=OF
∴四边形AFEC是平行四边形
又∵EF⊥AC
∴四边形AFEC是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定;矩形的性质.
根据图形很容易证出△AOF≌△COF,则有OE=OF,进而证得四边形AFCE是平行四边形,又因为EF⊥AC,故可根据对角形垂直平分的四边形为菱形进行判定.
本题考查了菱形的判定和矩形的性质.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.
证明题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )