试题
题目:
已知:如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F,
求证:DF=AB.
答案
证明:
连接DE,
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD,AD∥BC,
∴∠ADE=∠DEC,
∵AD=AE,
∴∠ADE=∠FED,
∴∠DEC=∠FED,
∵DF⊥AE,
∴∠DFE=∠C=90°,
在△DFE和△DCE中
∠DEF=∠DEC
∠DFE=∠C
DE=DE
∴△DFE≌△DCE,
∴DF=CD,
∵AB=CD,
∴DF=AB.
证明:
连接DE,
∵四边形ABCD是矩形,
∴∠C=90°,AB=CD,AD∥BC,
∴∠ADE=∠DEC,
∵AD=AE,
∴∠ADE=∠FED,
∴∠DEC=∠FED,
∵DF⊥AE,
∴∠DFE=∠C=90°,
在△DFE和△DCE中
∠DEF=∠DEC
∠DFE=∠C
DE=DE
∴△DFE≌△DCE,
∴DF=CD,
∵AB=CD,
∴DF=AB.
考点梳理
考点
分析
点评
专题
矩形的性质;全等三角形的判定与性质.
连接DE,根据矩形性质得出∠C=90°,AB=CD,AD∥BC,求出∠ADE=∠DEC=∠DEF,∠C=∠DFE,证△DFE≌△DCE,推出DF=CD即可.
本题考查了矩形性质,等腰三角形的性质,平行线性质,全等三角形的性质和判定的应用,注意:矩形的每个角都是直角,矩形的对边相等且平行.
证明题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )