试题
题目:
(2013·黔东南州一模)在矩形中ABCD中,AB=3,AD=4,对角线AC与BD相交于点O,EF是经过点O分别与AB、CD相交于点E、F的直线,则图中阴影部分的面积为
3
3
.
答案
3
解:∵矩形ABCD,
∴OA=OC,AB∥DC,
∴∠DCA=∠CAB,∠CFE=∠AEF,
∴△CFO≌△AEO,
∴△CFO的面积等于△AEO的面积,
∴图中阴影部分的面积=△ODC的面积,
∵AB=3,AD=4,
∴矩形ABCD的面积是4×3=12,
∴图中阴影部分的面积=
1
4
×12=3,
故答案为3.
考点梳理
考点
分析
点评
矩形的性质;全等三角形的判定与性质.
根据矩形的性质得到OA=OC,AB∥DC,推出∠DCA=∠CAB,∠CFE=∠AEF,证△CFO≌△AEO,求出△CFO的面积等于△AEO的面积,求出△ODC的面积即可.
本题主要考查对矩形的性质,全等三角形的性质和判定,三角形的面积,平行线的性质等知识点的理解和掌握,能求出△CDO的面积是解此题的关键.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )