试题
题目:
(2009·天津)我们把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.若一个四边形ABCD的中点四边形是一个矩形,则四边形ABCD可以是
正方形或对角线互相垂直的四边形
正方形或对角线互相垂直的四边形
.
答案
正方形或对角线互相垂直的四边形
解:∵四边形ABCD的中点四边形是一个矩形,
∴四边形ABCD的对角线一定垂直,只要符合此条件即可,
∴四边形ABCD可以是正方形或对角线互相垂直的四边形.
考点梳理
考点
分析
点评
专题
三角形中位线定理;矩形的性质.
如果中点四边形是矩形,那么原四边形的对角线必然垂直,符合此条件的还有正方形.
本题难度中等,考查判断一个四边形的中点四边形的形状.牢记下面的结论,中点四边形一定是平行四边形,当原来四边形的对角线相等时,中点四边形是菱形,当原来四边形的对角线互相垂直时,中点四边形是矩形,当原来四边形的对角线垂直且相等时,中点四边形是正方形,就能轻易得出答案.
压轴题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )