答案
(2,4)或(3,4)或(8,4)
解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:

过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=
OA=5,
根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P
1(8,4);
当PD=OD(P在左边)时,根据题意画出图形,如图所示:

过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,
根据勾股定理得:QD=3,故OQ=OD-QD=5-3=2,则P
2(2,4);
当PO=OD时,根据题意画出图形,如图所示:

过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,
根据勾股定理得:OQ=3,则P
3(3,4),
综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).
故答案为:(2,4)或(3,4)或(8,4)