试题
题目:
如图,在矩形ABCD中,F是BC边上一点,AF的延长线交DC的延长线于G,DE⊥AG于E,且DE=DC.求证:AE=BF.
答案
证明:∵四边形ABCD是矩形,
∴AB=CD,
又∵DE=DC,
∴AB=DE,
∵AD∥BC,
∴∠BFA=∠DAE,
∴在△ABF和△DEA中
∠BFA=∠DAE
∠B=∠DEA=90°
AB=DE
,
∴△ABF≌△DEA,
∴AE=BF.
证明:∵四边形ABCD是矩形,
∴AB=CD,
又∵DE=DC,
∴AB=DE,
∵AD∥BC,
∴∠BFA=∠DAE,
∴在△ABF和△DEA中
∠BFA=∠DAE
∠B=∠DEA=90°
AB=DE
,
∴△ABF≌△DEA,
∴AE=BF.
考点梳理
考点
分析
点评
专题
矩形的性质;全等三角形的判定与性质.
证明线段相等可放在三角形中证明三角形全等,AE和BF可放入△ABF和△EDA中,证明这两个三角形全等即可.
本题考查矩形的性质以及全等三角形的判定和性质,关键是知道矩形的四个角为直角,对边相等.
证明题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )