试题
题目:
如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.求证:PA=PQ.
答案
证明:∵四边形ABCD是矩形.
∴∠ABC=∠BCD=90°.
∵△PBC和△QCD是等边三角形.
∴∠PBC=∠PCB=∠QCD=60°.
∴∠PBA=∠ABC-∠PBC=30°,
∠PCD=∠BCD-∠PCB=30°.
∴∠PCQ=∠QCD-∠PCD=30°.
∴∠PBA=∠PCQ=30°.
∵AB=DC=QC,∠PBA=∠PCQ,PB=PC.
∴△PAB≌△PQC(SAS),
∴PA=PQ.
证明:∵四边形ABCD是矩形.
∴∠ABC=∠BCD=90°.
∵△PBC和△QCD是等边三角形.
∴∠PBC=∠PCB=∠QCD=60°.
∴∠PBA=∠ABC-∠PBC=30°,
∠PCD=∠BCD-∠PCB=30°.
∴∠PCQ=∠QCD-∠PCD=30°.
∴∠PBA=∠PCQ=30°.
∵AB=DC=QC,∠PBA=∠PCQ,PB=PC.
∴△PAB≌△PQC(SAS),
∴PA=PQ.
考点梳理
考点
分析
点评
矩形的性质;全等三角形的判定与性质;等边三角形的性质.
首先根据矩形的性质及等边三角形的性质可证明得到∠PBA=∠PCQ=30°,进而得出∠PBA=∠PCQ.由等边三角形的性质及矩形的性质得到AB=CQ,PB=PC,利用SAS判定△PAB≌△PQC,从而得到PA=PQ.
此题考查了矩形的性质和全等三角形的判定及等边三角形的性质等,利用已知得出∠PBA=∠PCQ是解题关键.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )