翻折变换(折叠问题);矩形的性质.
(1)根据折叠的性质可得∠ADB=∠EDB,再根据两直线平行,内错角相等可得∠ADB=∠DBC,然后求出∠EBD=DBC,根据等角对等边可得BF=DF,设BF=x,表示出CF,在Rt△CDF中,利用勾股定理列出方程求解即可;
(2)根据折叠的性质可得DH=BH,设BH=DH=x,表示出CH,然后在Rt△CDH中,利用勾股定理列出方程求出x,再连接BD、BG,根据翻折的性质可得BG=DG,∠BHG=∠DHG,根据两直线平行,内错角相等求出∠BHG=∠DGH,然后求出∠DHG=∠DGH,根据等角对等边可得DH=DG,从而求出四边形BHDG是菱形,再利用勾股定理列式求出BD,然后根据菱形的面积列出方程求解即可.
本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.