试题

题目:
青果学院如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动.
(1)若动点M、N同时出发,经过几秒钟两点相遇?
(2)若点E在线段BC上,BE=2cm,动点M、N同时出发且相遇时均停止运动,那么点M运动到第几秒钟时,与点A、E、M、N恰好能组成平行四边形?
答案
解:(1)设t秒时两点相遇,则有t+2t=24,
解得t=8.
答:经过8秒两点相遇. (4分)
(2)由(1)知,点N一直在AD上运动,所以当点M运动到BC边上的时候,点A、E、M、N才可能组成平行四边形,
设经过x秒,四点可组成平行四边形.分两种情形:
当点M运动到E的右边时:①8-x=10-2x,解得x=2,(4分)
当点M运动到E的左边时,②8-x=2x-10,解得x=6,(4分)
答:第2秒或6秒钟时,点A、E、M、N组成平行四边形.(1分)
解:(1)设t秒时两点相遇,则有t+2t=24,
解得t=8.
答:经过8秒两点相遇. (4分)
(2)由(1)知,点N一直在AD上运动,所以当点M运动到BC边上的时候,点A、E、M、N才可能组成平行四边形,
设经过x秒,四点可组成平行四边形.分两种情形:
当点M运动到E的右边时:①8-x=10-2x,解得x=2,(4分)
当点M运动到E的左边时,②8-x=2x-10,解得x=6,(4分)
答:第2秒或6秒钟时,点A、E、M、N组成平行四边形.(1分)
考点梳理
矩形的性质;平行四边形的性质.
(1)相遇时,M和N所经过的路程正好是矩形的周长,在速度已知的情况下,只需列方程即可解答.
(2)因为按照N的速度和所走的路程,在相遇时包括相遇前,N一直在AD上运动,当点M运动到BC边上的时候,点A、E、M、N才可能组成平行四边形,其中有两种情况,即当M到C点时以及在BC上时,所以要分情况讨论.
此题主要考查了平行四边形的判定,难易程度适中.
动点型.
找相似题