试题
题目:
已知矩形的周长是72cm,一边中点与对边的两个端点连线的夹角为直角,则此矩形的长边和短边长分别是( )
A.26cm 10cm
B.25cm 11cm
C.24cm 12cm
D.23cm 13cm
答案
C
解:如图,∵E是AD的中点,
∴AE=DE,
在△ABE和△DCE中,
AB=CD
∠A=∠D=90°
AE=DE
,
∴△ABE≌△DCE(SAS),
∴BE=CE,
∵BE⊥CE,
∴△BCE是等腰直角三角形,
∴∠EBC=∠ECB=45°,
∴∠ABE=∠DCE=90°-45°=45°,
∴△ABE与△CDE都是等腰直角三角形,
∴AB=AE=
1
2
AD,
∴2(AB+AD)=2(AD+
1
2
AD)=3AD=72,
解得AD=24cm,
AB=
1
2
×24=12cm,
即,此矩形的长边和短边长分别是24cm,12cm.
故选C.
考点梳理
考点
分析
点评
矩形的性质.
作出图形,根据矩形的对边相等,四个角都是直角,利用“边角边”证明△ABE和△DCE全等,根据全等三角形对应边相等可得BE=CE,从而得到△BCE是等腰直角三角形,然后求出△ABE与△CDE都是等腰直角三角形,从而得到矩形的短边等于长边的一半,然后根据矩形的周长进行计算即可得解.
本题考查了矩形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,求出矩形的短边等于长边的一半是解题的关键.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )