试题
题目:
已知:如图,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED.
(1)求证:BE=CD;
(2)若AB=4,AD=7,求△EFD的周长.
答案
(1)证明:矩形ABCD中,∠B=∠C=90°,
∴∠1+∠3=90°,
∵EF⊥ED,
∴∠1+∠2=90°,
∴∠3=∠2,又EF=ED,
∴△BFE≌△CED,
∴BE=CD;
(2)解:矩形ABCD中,AB=CD=4,BC=AD=7,
∵△BFE≌△CED,
∴BE=CD=4,
∴EC=3,
∴ED=5,
∴EF=ED=5,
∴FD=
5
2
,
∴△EFD的周长=
10+5
2
.
(1)证明:矩形ABCD中,∠B=∠C=90°,
∴∠1+∠3=90°,
∵EF⊥ED,
∴∠1+∠2=90°,
∴∠3=∠2,又EF=ED,
∴△BFE≌△CED,
∴BE=CD;
(2)解:矩形ABCD中,AB=CD=4,BC=AD=7,
∵△BFE≌△CED,
∴BE=CD=4,
∴EC=3,
∴ED=5,
∴EF=ED=5,
∴FD=
5
2
,
∴△EFD的周长=
10+5
2
.
考点梳理
考点
分析
点评
专题
矩形的性质;全等三角形的判定与性质;勾股定理.
本题可通过证明△BFE≌△CED来证得BE=CD;然后利用全等三角形的性质和矩形的性质得到BE=CD=4,BF=EC=3,然后利用勾股定理分别求得EF、ED、FD的长,进而求出△EFD的周长.
本题主要考查了全等三角形的证明、勾股定理以及矩形的性质.
计算题;证明题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )