试题
题目:
长方形ABCD中,E是BC中点,作∠AEC的角平分线交AD于F点,若AB=3,AD=8,则FD的长度为( )
A.2
B.3
C.4
D.5
答案
B
解:∵四边形ABCD是矩形,
∴AD=BC=8,AD∥BC,
∴∠AFE=∠FEC,
∵EF平分∠AEC,
∴∠AEF=∠FEC,
∴∠AFE=∠AEF,
∴AE=AF,
∵E为BC中点,BC=8,
∴BE=4,
在Rt△ABE中,AB=3,BE=4,由勾股定理得:AER=5,
∴AF=AE=5,
∴DF=AD-AF=8-5=3,
故选B.
考点梳理
考点
分析
点评
矩形的性质;等腰三角形的判定与性质;勾股定理.
求出∠AFE=∠AEF,推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.
本题考查了矩形性质,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )