试题

题目:
青果学院如图,在矩形ABCD中,E、H、G、F分别为边AB、BC、CD、DA的中点,若AB=3,AD=4,则图中四边形EFGH的面积为(  )



答案
B
青果学院解:连接HF、EG,
∵矩形ABCD,
∴BC∥AD,BC=AD,
∵H、F分别为边BC、DA的中点,
∴BH=AF,
∴四边形BHFA是平行四边形,
∴AB=HF,AB∥HF,
同理BC=EG,BC∥EG,
∵AB⊥BC,
∴HF⊥EG,
∴四边形EFGH的面积是
1
2
EG×HF=
1
2
×3×4=6.
故选B.
考点梳理
矩形的性质;三角形内角和定理;平行四边形的判定与性质.
根据矩形的性质推出BE=AF,BE∥AF得到平行四边形BHFA,推出AB∥HF,AB=HF,同理得到BC=EG,BC∥EG,推出HF⊥EG,根据三角形的面积公式求出即可.
本题主要考查对矩形的性质,平行四边形的性质和判定,三角形的面积等知识点的理解和掌握,能求出HF、EG的长和HF⊥EG是解此题的关键.
计算题.
找相似题