试题
题目:
如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为( )
A.
15
8
B.
15
4
C.
15
2
D.15
答案
B
解:连接AF.
根据折叠的性质,得EF垂直平分AC,则AF=CF.设AF=x,则BF=4-x.
在直角三角形ABF中,根据勾股定理,得x
2
=9+(4-x)
2
,
解得x=
25
8
.
在直角三角形ABC中,根据勾股定理,得AC=5,则AO=2.5.
在直角三角形AOF中,根据勾股定理,得OF=
15
8
,
根据全等三角形的性质,可以证明OE=OF,则EF=
15
4
.
故选B.
考点梳理
考点
分析
点评
翻折变换(折叠问题);矩形的性质.
连接AF,根据折叠的性质,得EF垂直平分AC,则AF=CF.设AF=x,则BF=4-x,根据勾股定理求得x的值,再根据勾股定理求得AC的长,即可求得AO的长,再根据勾股定理求得OF的长,进而求得EF=2OF.
此题综合运用了折叠的性质、矩形的性质、全等三角形的判定及性质以及勾股定理.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )