试题
题目:
顺次连接矩形ABCD各边中点所得四边形必定是( )
A.平行四边形
B.矩形
C.正方形
D.菱形
答案
D
解:如图:E,F,G,H为矩形的中点,则AH=HD=BF=CF,AE=BE=CG=DG,
在Rt△AEH与Rt△DGH中,AH=HD,AE=DG,
∴△AEH≌△DGH,
∴EH=HG,
同理,△AEH≌△DGH≌△BEF≌△CGF≌△DGH,
∴EH=HE=GF=EF,∠EHG=∠EFG,
∴四边形EFGH为菱形.
故选D.
考点梳理
考点
分析
点评
菱形的判定;三角形中位线定理;矩形的性质.
根据三角形的中位线定理和菱形的判定可知,顺次连接矩形各边中点所得的四边形是菱形.
此题主要考查了菱形的判定,综合利用了三角形的中位线定理和矩形的性质.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )