试题
题目:
如图一块矩形的纸片CD=2cm,如果沿图中的EC对折,B点刚好落在AD上,此时∠BCE=15°,则BC的长为( )cm.
A.4
B.
2
3
C.
6
D.
2
2
答案
A
解:∵△EB′C是△EBC翻折后得到的
∴∠BCB'=2∠BCE=30°
∵BC∥AD
∴∠CB'D=∠BCB'=30°
在Rt△B'CD中,B'C=2CD=4
∴BC=B'C=4.
故选A.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);矩形的性质.
由折叠可知∠BCB'=2∠BCE=30°,根据矩形的性质BC∥AD和Rt△B'CD中的B'C=2CD=4,可求得BC的长.
本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等,对应线段相等.
计算题;综合题;压轴题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )