试题

题目:
青果学院(2011·大连一模)如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于(  )



答案
C
解:∵矩形ABCD,
∴∠ADC=90°,
∵EF⊥AD,
∴EF∥CD,
∴∠FED=∠EDC,
∵DE平分∠ADC,
∴∠FDE=∠EDC,
∴∠FED=∠FDE,
∴DF=E=3,
∵EF⊥AD,
∴∠AFE=90°,
∵AE=5,EF=3,
由勾股定理得:AF=4,
∴AD=AF+DF=3+4=7.
故选C.
考点梳理
矩形的性质;平行线的判定与性质;角平分线的性质;等腰三角形的判定;勾股定理.
由矩形ABCD,推出∠ADC=90°,得到EF∥CD,推出∠FED=∠EDC,再由角平分线推出∠FED=∠FDE,求出DF=EF=3,根据勾股定理求出AF长,相加即可得出答案.
本题主要考查对矩形的性质,勾股定理,角平分线的定义,平行线的性质和判定,等腰三角形的判定等知识点的理解和掌握,能求出DF=FE是解此题的关键,题型较好,难度适中.
计算题.
找相似题