试题

题目:
若矩形对角线相交所成钝角为120°,较短的边长为4cm,则对角线的长为(  )



答案
D
解:青果学院
∵∠AOD=120°,
∴∠AOB=180°-120°=60°,
∵四边形ABCD是矩形,
∴OA=OC=
1
2
AC,OB=OD=
1
2
BD,AC=BD,
∴OA=OB,
∴△OAB是等边三角形,
∴OA=OB=AB,
∵AB=4cm,
∴OA=OB=AB=4cm,
∴AC=BD=8cm,
故选D.
考点梳理
矩形的性质;含30度角的直角三角形.
根据矩形性质求出OA=OB,根据已知求出∠AOB=60°,得出等边三角形AOB,推出OA=OB=AB,求出OA、OB、即可求出AC、BD.
本题考查了矩形的性质和等边三角形的性质和判定,关键是求出OA和OB的长,题目具有一定的代表性,是一道比较好的题目.
找相似题