试题
题目:
(2008·绍兴)将一张纸第一次翻折,折痕为AB(如图1),第二次翻折,折痕为PQ(如图2),第三次翻折使AP与PQ重合,折痕为PC(如图3),第四次翻折使PB与PA重合,折痕为PD(如图4).此时,如果将纸复原到图1的形状,则∠CPD的大小是( )
A.120°
B.90°
C.60°
D.45°
答案
B
解:第一次折叠,可以不考虑;
第二次折叠,∠APQ+∠BPQ=180°;
第三次折叠,∠CPQ=
1
2
×∠APQ;
第四次折叠,∠DPQ=
1
2
×∠BPQ;
∠CPD=∠CPQ+∠DPQ=
1
2
∠APQ+
1
2
∠BPQ=
1
2
×180°=90°.
故选B.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);矩形的性质.
根据平角定义和角平分线定义进行分析整理即可.
本题主要考查了折叠的特点,需理清折叠后角的变化,由此求出要求的角的度数.
计算题;操作型.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )