试题
题目:
(2010·泰安)如图,矩形ABCD的两对角线AC、BD交于点O,∠AOB=60°,设AB=xcm,矩形ABCD的面积为Scm
2
,则变量s与x间的函数关系式为( )
A.
s=
3
x
2
B.
s=
3
3
x
2
C.
s=
3
2
x
2
D.
s=
1
2
x
2
答案
A
解:在矩形ABCD中,AO=BO,
∵∠AOB=60°,
∴△ABO是等边三角形,
∴∠ABO=60°,
在Rt△ABD中,
∴AD=ABtan60°=
3
x,
∴矩形ABCD的面积S=AD·AB=
3
x·x=
3
x
2
cm
2
.
故选A.
考点梳理
考点
分析
点评
专题
矩形的性质;等边三角形的判定与性质.
由∠AOB=60°根据矩形的对角线相等且互相平分可得△ABO是等边三角形,所以∠ABD等于60°,再求出AD的长,进而可求面积.
本题主要利用矩形的性质和等边三角形的判定和性质求解.
压轴题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )