试题
题目:
(2010·淄博)如图所示,把一长方形纸片沿MN折叠后,点D,C分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于( )
A.144°
B.126°
C.108°
D.72°
答案
B
解:∵∠AMD′=36°,
∴∠NMD=∠NMD′=72°.
∵AD∥BC,
∴∠BNM=∠NMD=72°.
又∵∠D′=∠D=90°,
∴∠NFD′=360°-72°×2-90°=126°.
故选B.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);矩形的性质.
根据∠AMD′=36°和折叠的性质,得∠NMD=∠NMD′=72°;根据平行线的性质,得∠BNM=∠NMD=72°;根据折叠的性质,得∠D′=∠D=90°;根据四边形的内角和定理即可求得∠NFD′的值.
此题综合运用了折叠的性质、平行线的性质、四边形的内角和定理.
计算题;压轴题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·普洱)矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )