试题
题目:
如图,把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,连接BE,DF.请你猜一猜四边形BFDE是什么特殊四边形?并证明你的猜想.
答案
解:四边形BFDE是菱形.理由如下:
设BD与EF相交于点O.
∵把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,
∴OB=OD,BF=FD.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠OBF=∠ODE.
在△DOE和△BOF中,
∠ODE=∠OBF
OD=OB
∠DOE=∠BOF
,
∴△DOE≌△BOF,
∴OE=OF,
又∵OB=OD,
∴四边形BFDE为平行四边形,
又∵BF=FD,
∴四边形BFDE是菱形.
解:四边形BFDE是菱形.理由如下:
设BD与EF相交于点O.
∵把平行四边形ABCD翻折,使B点与D点重合,EF为折痕,
∴OB=OD,BF=FD.
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠OBF=∠ODE.
在△DOE和△BOF中,
∠ODE=∠OBF
OD=OB
∠DOE=∠BOF
,
∴△DOE≌△BOF,
∴OE=OF,
又∵OB=OD,
∴四边形BFDE为平行四边形,
又∵BF=FD,
∴四边形BFDE是菱形.
考点梳理
考点
分析
点评
翻折变换(折叠问题);全等三角形的判定与性质;平行四边形的判定与性质;菱形的判定.
设BD与EF相交于点O.先根据折叠的性质得出OB=OD,BF=FD.再由ASA证明△DOE≌△BOF,得出OE=OF,根据对角线互相平分的四边形是平行四边形证出四边形BFDE为平行四边形,进而根据有一组邻边相等的平行四边形是菱形得出四边形BFDE是菱形.
本题考查了轴对称的性质,全等三角形的判定与性质,平行四边形的判定与性质,菱形的判定,综合性较强,难度中等.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )