试题
题目:
(2011·静安区二模)已知:如图,在·ABCD中,点E、F分别是AB、CD的中点,CE、AF与对角线BD分别相交于点G、H.
(1)求证:DH=HG=BG;
(2)如果AD⊥BD,求证:四边形EGFH是菱形.
答案
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.(1分)
∴△DHF∽△BHA,
∵点E、F分别是AB、CD的中点,
∴
DH
HB
=
DF
AB
=
DF
CD
=
1
2
.(2分)
∴DH=
1
3
BD
.(1分)
同理:BG=
1
3
BD
.(1分)
∴DH=HG=GB=
1
3
BD
.(1分)
(2)
连接EF,交BD于点O.(1分)
∵AB∥CD,AB=CD,点E、F分别是AB、CD的中点,
∴
FO
EO
=
OD
BO
=
DF
BE
=
1
2
CD
1
2
AB
=1
.(1分)
∴FO=EO,DO=BO.(1分)
∵DH=GB,
∴OH=OG.
∴四边形EGFH是平行四边形.(1分)
∵点E、O分别是AB、BD的中点,∴OE∥AD.
∵AD⊥BD,∴EF⊥GH.(1分)
∴·HEGF是菱形.(1分)
证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.(1分)
∴△DHF∽△BHA,
∵点E、F分别是AB、CD的中点,
∴
DH
HB
=
DF
AB
=
DF
CD
=
1
2
.(2分)
∴DH=
1
3
BD
.(1分)
同理:BG=
1
3
BD
.(1分)
∴DH=HG=GB=
1
3
BD
.(1分)
(2)
连接EF,交BD于点O.(1分)
∵AB∥CD,AB=CD,点E、F分别是AB、CD的中点,
∴
FO
EO
=
OD
BO
=
DF
BE
=
1
2
CD
1
2
AB
=1
.(1分)
∴FO=EO,DO=BO.(1分)
∵DH=GB,
∴OH=OG.
∴四边形EGFH是平行四边形.(1分)
∵点E、O分别是AB、BD的中点,∴OE∥AD.
∵AD⊥BD,∴EF⊥GH.(1分)
∴·HEGF是菱形.(1分)
考点梳理
考点
分析
点评
专题
三角形中位线定理;平行四边形的性质;菱形的判定.
(1)根据AB∥CD,利用平行线分线段成比例定理即可求证
DH
HB
=
DF
AB
=
DF
CD
=
1
2
.则DH=
1
3
BD,BG=
1
3
BD,即可求证;
(2)连接EF,交BD于点O,根据对角线互相平分的四边形是平行四边形即可证明四边形EGFH是平行四边形,根据对角线互相垂直的平行四边形是菱形即可求证.
本题主要考查了平行线分线段成比例定理,以及菱形的判定,正确理解定理是解决本题的关键.
证明题.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )