试题
题目:
(1997·西宁)过平行四边形对角线的交点,引互相垂直的两条直线分别和四边形的四条边相交,判断顺次连接四个交点所组成的四边形是什么四边形,并证明你的结论.
答案
解:是菱形.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OD=OB,
∴∠1=∠2,
在△DOE和△BOF中,
∠1=∠2
OD=OB
∠3=∠4
,
∴△DOE≌△BOF(ASA),
∴OE=OF,
同理可得:OG=OH,
∴四边形EGFH为平行四边形,
∵EF⊥GH,
∴·EGFH为菱形.
解:是菱形.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OD=OB,
∴∠1=∠2,
在△DOE和△BOF中,
∠1=∠2
OD=OB
∠3=∠4
,
∴△DOE≌△BOF(ASA),
∴OE=OF,
同理可得:OG=OH,
∴四边形EGFH为平行四边形,
∵EF⊥GH,
∴·EGFH为菱形.
考点梳理
考点
分析
点评
专题
菱形的判定;全等三角形的判定与性质;平行四边形的性质.
首先根据题意画出图形,易证得四边形EGFH为平行四边形,又由EF⊥GH,即可证得·EGFH为菱形.
此题考查了平行四边形的判定与性质、菱形的判定以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
压轴题;探究型.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )