试题
题目:
(2006·菏泽)如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.
求证:
(1)四边形ABCD是菱形.
(2)BF=DE.
答案
证明:(1)∵AD∥BC,AD=BC(已知),
∴四边形ABCD为平行四边形.
又邻边AD=DC,
∴四边形ABCD为菱形;(3分)
(2)证法一:如图:
记EF与AC交点为G,EF与AB的交点为M.
由(1)证得四边形ABCD为菱形,
所以对角线AC平分∠A,
即∠BAC=∠DAC.
又∵EF⊥AC,AG=AG,
∴△AGM≌△AGE,∴AM=AE.(6分)
又∵E为AD的中点,四边形ABCD为菱形,
∴AM=BM.∠MAE=∠MBF.
又∵∠BMF=∠AME,
∴△BMF≌△AME.
∴BF=AE.
∴BF=DE.(8分)
证法二:如图:连接BD
∵四边形ABCD为菱形
∴BD⊥AC
∵EF⊥AC
∴EF∥BD
∵BF∥DE
∴四边形BDEF是平行四边形
∴BF=DE(8分)
证明:(1)∵AD∥BC,AD=BC(已知),
∴四边形ABCD为平行四边形.
又邻边AD=DC,
∴四边形ABCD为菱形;(3分)
(2)证法一:如图:
记EF与AC交点为G,EF与AB的交点为M.
由(1)证得四边形ABCD为菱形,
所以对角线AC平分∠A,
即∠BAC=∠DAC.
又∵EF⊥AC,AG=AG,
∴△AGM≌△AGE,∴AM=AE.(6分)
又∵E为AD的中点,四边形ABCD为菱形,
∴AM=BM.∠MAE=∠MBF.
又∵∠BMF=∠AME,
∴△BMF≌△AME.
∴BF=AE.
∴BF=DE.(8分)
证法二:如图:连接BD
∵四边形ABCD为菱形
∴BD⊥AC
∵EF⊥AC
∴EF∥BD
∵BF∥DE
∴四边形BDEF是平行四边形
∴BF=DE(8分)
考点梳理
考点
分析
点评
专题
菱形的判定;全等三角形的判定与性质;平行四边形的判定与性质.
(1)有一组邻边相等的平行四边形为菱形,AD和BC既平行又相等,所以四边形ABCD为平行四边形,而AD=DC=BC,所以平行四边形ABCD为菱形;
(2)要证BF=DE,而在原题中已知AE=DE,所以证明的方向就变为证BF=AE,而证BF=AE则可以通过证△FBM≌△EAM来实现.
此题主要考查菱形的判定和平行四边形的基本性质,难易程度适中.
证明题.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )