试题
题目:
(2007·乌鲁木齐)将Rt△ACB沿直角边AC所在直线翻折180°,得到Rt△ACE(如图所示),点D与点F分别是斜边AB,AE的中点,连接CD,CF,则四边形ADCF是菱形,请给予证明.
答案
证明:∵Rt△ACB沿直角边AC翻折,
∴AB=AE,∠ACE=90°.
又∵点D与点F分别是AB,AE的中点,
∴AD=
1
2
AB,AF=
1
2
AE.
∵CD,CF分别是Rt△ACB与Rt△ACE斜边上的中线,
∴CD=
1
2
AB,CF=
1
2
AE,
∴AD=AF=CD=CF,
∴四边形ADCF是菱形.
证明:∵Rt△ACB沿直角边AC翻折,
∴AB=AE,∠ACE=90°.
又∵点D与点F分别是AB,AE的中点,
∴AD=
1
2
AB,AF=
1
2
AE.
∵CD,CF分别是Rt△ACB与Rt△ACE斜边上的中线,
∴CD=
1
2
AB,CF=
1
2
AE,
∴AD=AF=CD=CF,
∴四边形ADCF是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定;直角三角形斜边上的中线.
由翻折的性质知,AB=AE,∠ACE=90°,则点D对应点F,有AD=AF,由CD,CF分别是Rt△ACB与Rt△ACE斜边上的中线,得CD=
1
2
AB,CF=
1
2
AE,∴AD=AF=CD=CF,故四边相等的四边形ADCF是菱形.
本题利用了:1、翻折的性质:翻折是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、直角三角形的性质,菱形的判定求解.
证明题.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )