题目:
(2008·岳阳)如图(1),四边形ABCD为平行四边形,E在CD上,将△CBE沿BE翻折,点C正好落在AD边上的点C′处.

(1)在图(1)中,请直接写出四对相等的线段;
(2)将图(1)中的△ABC′剪下拼接在图(2)中△DCF的位置上(其中△ABC′的三个顶点A、B、C′分别与△DCF的三个顶点D、C、F重合,并且图(2)的点C′、D、F三点在同一直线上)试证明图(2)中的四边形BCFC′是菱形.
答案

(1)解:写出AB=CD,AD=BC,BC=BC',EC=EC',BC'=AD中的任意四对相等线段即可;
(2)证明一:在图甲中
∵四边形ABCD为平行四边形BC=AD,BC∥C'D
在图甲与图乙中依题意知△ABC'≌△DCF,∴AC'=DF
∴AC'+C'D=C'D+DF
∴AD=C'F,即BC=C'F.
又∵BC∥C'F
∴四边形BCFC'为平行四边形,
由折叠的性质知BC=BC'
∴四边形BCFC'为菱形.
证明二:∵C',D,F三点共线,又△ABC'的三个顶点A,B,C'分别与△DCF的三个顶点D,C,F重合
∴△ABC'≌△DCF
∴AC'=DF,AC'+C'D=C'D+DF
即AD=C'F
又∵四边形ABCD是平行四边形,BC∥C'F
∴四边形BCFC'是平行四边形,
又BC=BC'
∴平行四边形BCFC'是菱形.

(1)解:写出AB=CD,AD=BC,BC=BC',EC=EC',BC'=AD中的任意四对相等线段即可;
(2)证明一:在图甲中
∵四边形ABCD为平行四边形BC=AD,BC∥C'D
在图甲与图乙中依题意知△ABC'≌△DCF,∴AC'=DF
∴AC'+C'D=C'D+DF
∴AD=C'F,即BC=C'F.
又∵BC∥C'F
∴四边形BCFC'为平行四边形,
由折叠的性质知BC=BC'
∴四边形BCFC'为菱形.
证明二:∵C',D,F三点共线,又△ABC'的三个顶点A,B,C'分别与△DCF的三个顶点D,C,F重合
∴△ABC'≌△DCF
∴AC'=DF,AC'+C'D=C'D+DF
即AD=C'F
又∵四边形ABCD是平行四边形,BC∥C'F
∴四边形BCFC'是平行四边形,
又BC=BC'
∴平行四边形BCFC'是菱形.