试题
题目:
(2008·资阳)如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.
(1)点D是△ABC的
心;
(2)求证:四边形DECF为菱形.
答案
解:(1)点D是△ABC的内心.(2分)
(2)证法一:连接CD,(3分)
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,(4分)
又∵点D是△ABC的内心,
∴CD平分∠ACB,即∠FCD=∠ECD,(5分)
又∠FDC=∠ECD,
∴∠FCD=∠FDC
∴FC=FD,(6分)
∴·DECF为菱形.(7分)
证法二:
过D分别作DG⊥AB于G,DH⊥BC于H,DI⊥AC于I.(3分)
∵AD,BD分别平分∠CAB,∠ABC,
∴DI=DG,DG=DH.
∴DH=DI.(4分)
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,(5分)
∴S
□DECF
=CE·DH=CF·DI,
∴CE=CF.(6分)
∴·DECF为菱形.(7分)
考点梳理
考点
分析
点评
专题
菱形的判定;平行线的性质;角平分线的性质.
(1)由AD、BD分别是∠A、∠B的平分线,可知点D是△ABC的内心;
(2)连接CD,根据平行线的性质,角平分线的性质证明·DECF为菱形.
解答此题需要熟知以下概念:
(1)三角形的内心:三角形三个内角平分线的交点叫三角形的内心;
(2)平行四边形的定义:两组对边分别平行的四边形叫平行四边形;
(3)菱形的概念:有一组邻边相等的平行四边形是菱形;
综合题.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )