试题
题目:
(2009·云南)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
答案
(1)证明:如图,在△ABC和△DCB中,
∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB;(4分)
(2)解:据已知有BN=CN.证明如下:
∵CN∥BD,BN∥AC,
∴四边形BMCN是平行四边形,(6分)
由(1)知,∠MBC=∠MCB,
∴BM=CM(等角对等边),
∴四边形BMCN是菱形,
∴BN=CN.(9分)
(1)证明:如图,在△ABC和△DCB中,
∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB;(4分)
(2)解:据已知有BN=CN.证明如下:
∵CN∥BD,BN∥AC,
∴四边形BMCN是平行四边形,(6分)
由(1)知,∠MBC=∠MCB,
∴BM=CM(等角对等边),
∴四边形BMCN是菱形,
∴BN=CN.(9分)
考点梳理
考点
分析
点评
专题
菱形的判定;全等三角形的判定.
(1)由SSS可证△ABC≌△DCB;
(2)BN=CN,可先证明四边形BMCN是平行四边形,由(1)知,∠MBC=∠MCB,可得BM=CM,于是就有四边形BMCN是菱形,则BN=CN.
此题主要考查全等三角形和菱形的判定.
证明题;压轴题;探究型.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )