试题
题目:
(2010·东阳市)如图,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论;
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件
AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC
AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC
.
答案
AB=AC或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC
解:(1)AD是△ABC的中线.(1分)
理由如下:∵BE⊥AD,CF⊥AD,
∴∠BED=∠CFD=90°(1分)
又∵BE=CF,∠BDE=∠CDF,
∴△BDE≌△CFD(AAS).(2分)
∴BD=CD,即AD为△ABC的中线;
(2)∵四边形BFCE,AB=CD或∠ABC=∠ACB或AD⊥BC或AD平分∠BAC(2分)答案不唯一.
考点梳理
考点
分析
点评
专题
菱形的判定;全等三角形的判定与性质.
(1)先证明△BDE≌△CFD,得出BD=CD,可以判断AD是△ABC的中线;
(2)要使四边形BFCE是菱形,由BC与EF互相平分,只要BC与EF互相垂直即可,则添加的条件为∠ABC=∠ACB或AD⊥BC或AD平分∠BAC.答案不唯一.
考查了全等三角形的判定和菱形的性质.需要熟练掌握.
证明题;开放型.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )