试题
题目:
如图所示,在△ABC中,AB=AC,P为BC的中点,PE⊥AB于E,PF⊥AC于F,EM⊥AC于M,FN⊥AB于N,EM与FN相交于点Q,那么四边形PEQF是菱形吗?说明你的理由.
答案
解:四边形PEQF是菱形.理由如下:
∵PE⊥AB,FN⊥AB,
∴PE∥FN.
同理,PF∥EM.
∴四边形PEQF是平行四边形.
∵AB=AC,
∴∠B=∠C.
又∵PE⊥AB,PF⊥AC,
∴∠BEP=∠CFP=90°.
又∵BP=CP,
∴△BEP≌△CFP(AAS).
∴PE=PF.
∴四边形PEQF是菱形.
解:四边形PEQF是菱形.理由如下:
∵PE⊥AB,FN⊥AB,
∴PE∥FN.
同理,PF∥EM.
∴四边形PEQF是平行四边形.
∵AB=AC,
∴∠B=∠C.
又∵PE⊥AB,PF⊥AC,
∴∠BEP=∠CFP=90°.
又∵BP=CP,
∴△BEP≌△CFP(AAS).
∴PE=PF.
∴四边形PEQF是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定.
根据有一组邻边相等的平行四边形是菱形.要证四边形PEQF是菱形,先证四边形PEQF是平行四边形,再证PE=PF即可.
本题利用了:
1、平行四边形的判定和性质;
2、全等三角形的判定和性质;
3、菱形的判定.
证明题.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )