试题
题目:
在一次班级活动中,小亮用宽度相同的彩带布置教室,他把两种不同颜色的彩带粘贴在一起,发现重叠部分是一个菱形,如图所示,他任意转动彩带,发现重叠部分仍是菱形,能说明这里面的道理吗?并证明.
答案
证明:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
所以AB∥CD,AD∥BC,AE=AF.
∴四边形ABCD是平行四边形.
∵S
·ABCD
=BC·AE=CD·AF,
又AE=AF.
∴BC=CD,
∴四边形ABCD是菱形.
证明:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,
所以AB∥CD,AD∥BC,AE=AF.
∴四边形ABCD是平行四边形.
∵S
·ABCD
=BC·AE=CD·AF,
又AE=AF.
∴BC=CD,
∴四边形ABCD是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定.
根据有一组邻边相等的平行四边形是菱形.要证四边形ABCD是菱形,先证四边形ABCD是平行四边形.再证BC=CD即可.
本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.
应用题.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )