试题
题目:
(2005·岳阳)已知点D、E、F分别为△ABC的边AB、BC、CA的中点,连接DE、EF,要使四边形ADEF为菱形,则需要增加的条件是
AB=AC或∠B=∠C
AB=AC或∠B=∠C
.(只填一个就可以了).
答案
AB=AC或∠B=∠C
解:由题意知,DE,EF是三角形的中位线,所以四边形ADEF是平行四边形,要使平行四边形为菱形,只要添加,AB=AC,当AB=AC,点D,F分别是AB,AC的中点,所以有AE=AF,从而得证平行四边形ADEF为菱形,当添加∠B=∠C时,也有AB=AC,也可得证四边形ADEF为菱形.
考点梳理
考点
分析
点评
专题
三角形中位线定理;菱形的判定.
利用三角形的中位线定理易得四边形ADEF为平行四边形,那么添加一组邻边相等即可,若AE=AF,那么AB=AC,或者∠B=∠C.
本题利用了三角形的中位线的性质、菱形的判定方法求解.
开放型.
找相似题
(2013·玉林)如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断( )
(2012·威海)如图,在·ABCD中,AE,CF分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AECF为菱形的是( )
(2012·邵阳)如图所示,在△ABC中,AB=AC,∠A<90°,边BC、CA、AB的中点分别是D、E、F,则四边形AFDE是( )
(2011·襄阳)若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
(2011·清远)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是( )